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Zusammenfassung

Die Entdeckung des ersten exosolaren Planeten (Mayor and Queloz, 1995) hat der Frage nach
der Planetenentstehung neuen Auftrieb gegeben. Nachdem inzwischen viele weitere Planeten
entdeckt wurden (siehe Abbilung 1.1), stellt sich insbesondere für sehr massereiche Planeten
mit sehr großen Halbachse die Frage, wie diese entstanden sind, da diese mit der verbreiteteren
Core-Accretion Theory nicht zu erklären sind. Eine Alternative stellt die Entstehung durch
Gravitationsinstabilitäten dar, welche im Rahmen dieser Arbeit untersucht werden soll. Da
bei dieser insbesondere die Kühlung der protoplanetaren Scheibe eine wichtige Rolle spielt,
wird die Scheibe mit Berücksichtigung der Temperaturentwicklung simuliert.

Dazu werden selbst-gravitierende Akkretionsscheiben mit Hilfe des zweidimensionalen FARGO
Codes simuliert, welcher dazu mit Routinen für die Eigengravitation erweitert wurde (Baruteau,
2008). Außerdem wurde zusätzlich eine Energiegleichung mit viskoser Heizung sowie lokaler
Kühlung durch Wärmeabstrahlung implementiert. Dabei wurde für die viskose Heizung das
α-Modell nach Shakura and Sunyaev (1973) für die Viskosität zu Grunde gelegt.

Zum Testen des Eigengravitation-Codes wurden im ersten Schritt isotherme Akkretionsscheiben,
d. h. noch ohne Berücksichtigung der Energiegleichung, simuliert. Die Masse der Scheiben
wurde dabei so gewählt, dass die Scheiben laut Toomre-Kriterium fragmentieren sollten, was in
den Simulationen auch bestätigt werden konnte. Rechnungen mit leichteren Scheiben, welche
das Toomre-Kriterium nicht erfüllen, fragmentierten nicht.

Im weiteren Teil wurde der Einfluss des Parameters α der Viskosität auf die Fragmentation
der Scheibe mit Berücksichtigung der Heizung und Kühlung der Scheibe untersucht. Dabei
stellten wir bei keinerlei Werten von α Fragmentation fest.

Im letzten Teil wurden noch Scheibenmodelle in Anlehnung eines Modells von Rice et al.
(2005) simuliert. Während Rice et al. eine vereinfachte β-Kühlung und einen SPH (Smoothed
Particle Hydrodynamics) verwendeten, rechneten wir die Modelle mit dem FARGO-Grid-Code
und lokaler Kühlung durch Wärmeabstrahlung. Die Fragmentation der Scheibe des Modells
von Rice et al. konnten wir mit der realistischeren Kühlung nicht bestätigen.
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What happens if a big asteroid hits Earth? Judging from realistic simulations
involving a sledge hammer and a common laboratory frog, we can assume it will
be pretty bad.

David Barry

5



6



Contents Contents

Contents

1 Introduction 9
1.1 Planetary formation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.3 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 Theoretical foundations 15
2.1 Accretion disks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 Hydrodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.1 Basic equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.2 Viscosity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.3 Heat transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 Self-gravity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.4 Thermodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4.1 Estimation of cooling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 Numerical methods 25
3.1 Introduction - FARGO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1.1 2D quantities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.1.2 Code units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 Finite differences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.3 Staggered grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.4 The FARGO Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.5 Boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.5.1 Open boundary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.5.2 Reflecting boundary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.5.3 Damping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.6 Self gravity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.7 Energy equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.8 Local radiative cooling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.9 Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4 Results 41
4.1 Isothermal disk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.2 Disks with cooling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.2.1 Comparison with SPH models . . . . . . . . . . . . . . . . . . . . . . . 53

5 Summary 59

Acknowledgements 61

References 63

7



Contents Contents

8



1. Introduction

1 Introduction
The discovery of the first exosolar planet (Mayor and Queloz, 1995) has triggered a gold rush
for the discovery of exosolar planets. Over 400 exosolar plantes have been discovered right
now. Surprisingly the distribution of mass and semi-major axis of the exosolar planets (see
figure 1.1) is different to the distribution in the solar system. This reignited the discussion of
the formation of these planets especially between the standard model of core accretion and
the disk instability theory.

1.1 Planetary formation

The first theories of planetary formation emerged in the 18th century. In 1755 Immanuel Kant
(1724–1804) proposed his theory in his book “Allgemeine Naturgeschichte und Theorie des
Himmels” and Pierre-Simon Laplace (1749–1827) independently proposed his theory in the
last book of his series “Exposition du systeme du monde” in 1796.

According to Kant and Laplace, planets form out of a cold disk of gas and dust rotating
around the star. Both theories were combined by Arthur Schopenhauer (1788–1860) to the
Kant-Laplace theory. Nowadays, their basic ideas are the fundament of the modern standard
model for stellar formation.

In modern standard model there is a massive, rotating molecular cloud at the beginning. If
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Figure 1.1: Distribution of extrasolar planets (red points) as of February 9th, 2010. The planets
of the solar system (blue points) are displayed for comparison (www.exoplanet.eu)
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1.1. Planetary formation

the mass exceeds the Jeans limit (Jeans, 1902) it collapses and consequential temperature
and pressure will increase dramatically. If density and temperature are high enough nuclear
reactions can occur and a protostar is created. The rest of the molecular cloud, which is a
about 10 % to 0.1 % the mass of the original cloud, begins to collapse into a disk co-rotating
the emerging star to conserve the angular momentum in the cloud. The vertical extent of the
disk is ten to thirty times smaller than its horizontal extent. Usually ,the disks mass ranges
from 10−3M? to 10−1M?, but there have been detected more massive disks, for example in
the Orion Nebula cluster (Eisner and Carpenter, 2006). Figure 1.2 shows pictures from disks
in the Orion Nebula.

There are two competing theories, how planets form in these disk. The core accretion model
or sequential accretion scenario shall be discussed first:

Although most of the mass in the disk is in a gaseous state (mainly hydrogen and helium),
the solid component, which consists of dust grains with a size ranging from 0.1 µm to 1 µm,
contributes to the formation of planetesimals. By collisions between them, they grow to
aggregates of centimeter to meter size.

The gas pressure near the disk mid-plane will normally decrease with increasing radius and

Figure 1.2: Hubble Space Telescope images of four protoplanetary disks around young stars in
the Orion nebula, located 1.500 light-years away. Credit by Mark McCaughrean
(Max-Planck-Institute for Astronomy), C. Robert O’Dell (Rice University), and
NASA
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1.1. Planetary formation

Figure 1.3: Artist’s concept of a protoplanetary disk, NASA

therefore an outward pressure gradient will cause the gas to orbit with sub-Keplerian velocities.
As the solid particles does not feel the gas pressure, they orbit at Keplerian velocity. This
difference in velocity creates a drag force that will cause the solid particles to spiral inward
toward the central star as they loose angular momentum (Weidenschilling, 1977). The velocity
for particles with size within centimeter to meter range can be as high as 104 cm/s, so these
particles could reach the central star before they decouple from this disk gas and are able to
form kilometer size objects.

The solution for this issue is still unclear. Therefore different approaches are discussed. If
there are any regions in the disk that have local pressure extrema, these could trap particles
and stop them from migrating further inward (Haghighipour and Boss, 2003b,a). Klahr
and Bodenheimer (2003) for example suggest vortices, formed by a baroclinic instability,
or spiral-arms structures, formed by self-gravitating disks, which are density and pressure
maxima.

Assuming that sufficiently massive planetesimals have been formed, these rocky cores start to
accrete a gaseous envelope (Bodenheimer and Pollack, 1986; Pollack et al., 1996) and then
grow to gas giants with masses of Jupiter. Figure 1.3 shows an artist’s concept of such a disk
where some planetesimals or planets have formed already.

These gas giants will usually migrate inwards while accreting gas until most of the gas in disk
is either accreted or dissipated. Figure 1.1 shows planets at very large radii (> 10 AU) that
are very massive (m > Mjup) and thus are very unlikely to have been formed by core accretion,
as they would migrate faster inwards than they could accrete enough mass (Nelson et al., 2000;
Bate et al., 2003). Moreover, the formation timescale of such massive planets would exceed
the disks lifetime of a few millions years (Bally et al., 1998; Haisch et al., 2001; Briceño et al.,
2001; Eisner and Carpenter, 2003) by magnitudes.

Another theory to address these issues is the disk instability theory.

In this model, planets form directly by gravitational instability of overdense clumps in the
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1.2. Outline

disk. Therefore the disk must be sufficiently massive. There is strong theoretical (Yorke and
Bodenheimer, 1999) and observational (Osorio et al., 2003; Rodríguez et al., 2005; Eisner et al.,
2005) evidence that such disk do exists.

One of the main advantage of this theory is the fact, that the formation of gas giants is possible
even in the shortest-lived protoplanetary disks and therefore the idea of disk instability or
a hybrid theory where core accretion is accelerated by gravitational instabilities might be
required to form some of the found gas planets. Especially planets with very large radii and
high masses, such as found in figure 1.1 on the right hand side, are very likely to be formed by
gravitational instabilities, whereas planets with very small radii are difficult to form because
the disk have to cool down very fast.

This is still an inconsistency within this theory. It is unclear, if the disk can cool sufficiently
fast, so that compression energy can be radiated away. This is one point we are addressing in
this thesis. We therefore used local radiative cooling to cool down the disk in our simulations.

A more detailed overview of the disk instability theory can be found in Durisen et al. (2007).

1.2 Outline

In Section 2 we want to introduce the theoretical background of this thesis and explain the
equations used in the code.

Section 3 then focuses on the implemention of these equations in the FARGO code.

Afterwards we present our results in section 4.

Section 5 gives a brief summary of the work done.
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1.3. Notations

1.3 Notations

Throughout this work, we used the centimetre-gram-second (cgs) unit system and constants
listed in table 1.1.

Table 1.1: Physical constants used throughout this work.

gravitational constant G = 6.674 · 10−8 cm3/g s2

astronomical unit AU = 1.49597871475 · 1013 cm

Jupiter semi-major axis rjup = 5.204267 AU = 7.785472 · 1013cm

molecular mass mµ = 1.66053878283 · 10−24 g

solar mass M� = 1.9884 · 1033 g

Earth mass M⊕ = 3.0034896 · 10−6M� = 5.9723 · 1027g

Jupiter mass Mjup = 1.899 · 1027 g

radiation constant a = 4σR
c = 7.57 · 10−15 erg/cm3 K

Boltzmann constant kB = 1.380650424 · 10−16 erg/K

Planck constant h = 6.6260689633 · 1027 erg s

speed of light c = 299792458 · 102cm/s

Stefan-Boltzmann constant σR =
2π5k4B
15h3c2

= 5.6704 · 10−5 erg/cm2 s K4
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2. Theoretical foundations

2 Theoretical foundations

2.1 Accretion disks

In section 1 we described the framework of planet formation as accretion disks. While these
disk’s radial extent can reach a few hundreds of AU, its vertical extent is much smaller: Usually
the disks aspect ratio h, which is defined by h = H

r where H is the vertical pressure scale
height, ranges from 0.03 to 0.1. If the disk is in hydrostatic equilibrium in the vertical direction
H can be written as

H =
cs
Ω

(2.1)

where cs is the local sound speed and Ω the angular rotation rate. As the material in the flat
disk around the star rotates more or less Keplerian, the angular rotation rate is

Ω ≈ ΩK =

√
GM?

r3
(2.2)

The angular momentum of a the mass element m at a radius r is

J = m
√
GM?r (2.3)

as the gravitational field is nearly Keplerian. The energy of the mass element is given by

E = −1

2

GM?m

r
(2.4)

J diverges for r →∞ but E converges against zero for r →∞.

So, evolving the disk over time, most of the material will flow inward carrying mass towards the
star whereas a very small part of the mass can swallow most or all of the angular momentum
of the disk and carry it outwards. The star will then accrete the mass of the inner edge of
the accretion disk. The typical accretion rate is from about 10−9M�/yr to 10−8M�/yr. If we
consider only molecular viscosity as a source for inward radial drift, it is orders of magnitude
to small to account for this disk accretions rates. Therefore the inward drift of the gas is often
modelled with an phenomenological approach for an effective viscosity proposed by Shakura
and Sunyaev (1973), where the kinematic viscosity takes the form:

ν = αcsH = αH2ΩK = αc2
sΩ
−1
K (2.5)

with cs the local sound speed and α a numerical constant ranging typically from 10−5 to 10−1.
The last two steps used equation 2.1.

More background on accretions disks, can be found in Binney and Tremaine (1987); Pringle
(1981).
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2.2. Hydrodynamics

2.2 Hydrodynamics

2.2.1 Basic equations

Hydrodynamics consists of three basic equations, which are all based on three basic principles:

• Mass is neither created nor destroyed (conservation of mass)

• Change of momentum results from external forces (conservation of momentum)

• Energy is neither created nor destroyed (conservation of energy)

Coming from these basic principles, it’s possible to determine the basic equation.

The first equation results from the conservation of mass and is called continuity equation:

∂ρ

∂t
+∇ · (ρ~v) = 0 (2.6)

Where ρ is the mass density and ~v the velocity meaning that the temporal change of density
of mass density in a volume is caused by change of mass flux through the volume.

The second equation includes the pressure p, caused by thermal movement of gas particles
and follows from the conservation of momentum.

ρ

(
∂~v

∂t
+ (~v · ∇)~v

)
= −∇p+ ρ~f (2.7)

As additional forces, such as gravitation, Coriolis force and centrifugal force, can change the
momentum of the gas, the specific external force ~f appears as a source term in the equation.
External forces ~F relates to ~f through

~F =

∫
ρ~fdV (2.8)

The third equation covers the conservation of energy and includes the change of thermal energy
of adiabatic changes of the system.

∂(ρε)

∂t
+∇ · (ρε~v) = −p∇ · ~v (2.9)

The specific energy ε is defined analogue to 2.8.

The set of equations 2.6, 2.7 and 2.9 are often called Euler equations whereas equation 2.7 is
known as the Euler equation. The Euler equations are the basic equations of motion for ideal
fluids and are often completed with a equation of state for the pressure p.

More information about the derivation of the Euler equations can be found in Kley (2008b).

2.2.2 Viscosity

The Euler equations described in 2.2.1 cover only ideal fluids and so dissipative effects like
viscosity or heat conduction are not covered.
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2.2. Hydrodynamics

Equation 2.7 only takes pressure forces which are perpendicular to the surface into account. If
there are particles carrying momentum from one to another volume friction appears. So the
total force on the surface of a volume can be described as

~F =

∮
∂V

(−pn̂+ σn̂) df (2.10)

where pn̂ is the pressure force as seen before. n̂ is the surface normal and σ the stress tensor.

Usually one makes the following, phenomenological motivated, demands on σ:

• σ is symmetric (conservation of angular momentum)

• σ is invariant to translation and rotation

• σ depends only linear on the first derivation of velocity (linear approximation)

The most general form of a second-order tensor which meets the requirements is

σij = η

(
∂vi
∂xj

+
∂vj
∂xi

)
+ λ (∇~v) δij (2.11)

where δij is the Kronecker delta (Mihalas and Weibel-Mihalas, 1999, §25). η and λ are scalar
quantities for Newtonian fluids which depend on p and T in general. Usually σ is written in
the following form

σij = 2η

[
1

2

(
∂vi
∂xj

+
∂vj
∂xi

)
− 1

3
(∇~v) δij

]
+ ζ (∇~v) δij (2.12)

where η is called shear viscosity and ζ volume viscosity (also called bulk or second viscosity).

If this viscous forces are taken in into account, equation 2.7 changes to

ρ

(
∂~v

dt
+ (~v · ∇)~v

)
= −∇p+ ρ~f +∇ · σ (2.13)

This equation is called Navier-Stokes equation.

Equation 2.9 has also be modified to include the heat generated by the viscosity:

∂(ρε)

∂t
+∇(ρε~v) = −p∇~v + (σ · ∇)~v (2.14)

2.2.3 Heat transport

Equation 2.9 rests upon the assumption of conservation of energy, so energy is neither created
nor destroyed. But if we consider only a sub-part of a total system, energy can be lost by heat
conduction. So, we need to add a source term for external energy flux ~F :

∂(ρε)

∂t
+∇(ρε~v) = −p∇~v + (σ · ∇)~v −∇~F (2.15)

The set of equations 2.6, 2.13 and 2.15 are often called Navier-Stokes equations.

Usually the external energy flux ~F is given by

~F = ~Fcond + ~Frad (2.16)
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2.3. Self-gravity

where ~Fcond is the energy flux caused by conduction and ~Frad is the energy flux caused by
radiation.

According to Fourier’s law, the heat conduction term can by be written as

~Fcond = −k∇T (2.17)

where k is the thermal conductivity.

In local thermal equilibrium the radiation term can be written as

~Frad = −4

3

ca

κRρ
T 3∇T = −16

3

σR
κRρ

T 3∇T (2.18)

where a = 4σR
c is the radiation constant, κR the Rosseland mean opacity and σR =

2π5k4B
15h3c2

the
Stefan-Boltzmann constant. The Rosseland mean opacity κR is defined by

1

κR

∞∫
0

∂u(ν, T )

∂T
dν =

∞∫
0

1

κ(ν)

∂u(ν, T )

∂T
(2.19)

where κ is the frequency dependent opacity and u(ν, T ) follows from Planck’s law:

u(ν, T ) =
8πhν3

c3

1

e
hν
kBT − 1

(2.20)

2.3 Self-gravity

As the disk is spatially spread, gravity plays an important role. The gravity acting on the disk
by its own gravitational potential is called self-gravity. The gravitational potential at a point
~r is

Ψ(~r) = −G
∫
V

ρ(~r′)

|~r − ~r′|
d~r′ (2.21)

To include self-gravity into the hydrodynamics equations, it has to be added as an additional
external force in equation 2.13. Including self-gravity can destabilize the disk and possibly
lead to fragmentation. As we plan to study the possibility of planet fragmentation through
gravitational instabilities we present in the following the stability analysis of a flat disk.

We now assume a disk of infinitesimal thickness in which the volume density ρ, has the form
ρ = Σ(r, ϕ)δ(z). If we now integrate the equations 2.6 and 2.7 over all z we obtain the
two-dimensional Euler-equation:

∂Σ

∂t
+∇ · (Σ~v) = 0 (2.22)

∂(Σvr)

∂t
+∇ · (Σvr~v) = ΣrΩ2 − ∂p

∂r
− Σ

∂Ψ

∂r
(2.23)

∂(Σr2Ω)

∂t
+∇ · (Σr2Ω~v) = − ∂p

∂ϕ
− Σ

∂Ψ

∂ϕ
(2.24)
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2.3. Self-gravity

where ~v = (vr, vϕ) = (vr, rΩ), p is the vertically integrated pressure and Ψ the gravitational
potential which satisfies Poisson’s equation which reads now in (r, ϕ)-coordinates:

1

r

∂

∂r

(
r
∂Ψ

∂r

)
+

1

r2

∂2Ψ

∂ϕ2
+
∂2Ψ

∂z2
= 4πGΣδ(z) (2.25)

We now assume linear perturbations about the axisymmetric equilibrium state in the plane
where z = 0, where all quantities f ∈ {Ω, vr,Σ, P,Ψ} are of the form f = f0(r) + f1(r, ϕ, t).
f1 can be written as f̃1(r)e−ıσt+ımϕ and if we substitute this in the linearized perturbation
equations of 2.22, 2.23 and 2.24, we obtain

Σ̃1(σ −mΩ0) = −ıΣ0ṽ
′
r1 + Σ0mΩ̃1 (2.26)

ṽr1(σ −mΩ0) = −ı2rΩ0Ω̃1 − ı
c2
s0

Σ0
Σ̃′1 − ıΨ̃′1 (2.27)

Ω̃1(σ −mΩ0) = −ı κ2
0

2rΩ0
ṽr1 −

c2
s0

Σ0
ımΣ̃1 +

1

r2
ımΨ̃1 (2.28)

where κ2
0 = 2Ω0

r
∂
∂r (r2Ω0) is the epicyclic frequency and cs0 =

√
γp0
Σ0

is the sound speed.

If we set the radial dependency of f̃1(r) to ∝ eıkr and we assume tight winding (kr � m)
(Binney and Tremaine, 1987, section 6.2.2) the equations simplify to

Σ̃1(σ −mΩ0) = kΣ0ṽr1 (2.29)

ṽr1(σ −mΩ0) = −ı2rΩ0Ω̃1 +
c2
s0

Σ0
kΣ̃1 + kΨ̃1 (2.30)

Ω̃1(σ −mΩ0) = −ı κ2
0

2rΩ0
ṽr1 (2.31)

For the gravitational potential Ψ we do the same approximations to 2.25 and obtain

Ψ̃1 =
2πGΣ̃1

|k|
(2.32)

The substitution of equation 2.29, 2.31 and 2.32 in 2.30 leads to the dispersion relation:

(σ −mΩ0)2 = κ2
0 + c2

s0 − 2πG|k|Σ0 (2.33)

We now get stability (σ2 > 0) for axisymmetric perturbations (m = 0) when the right-hand
side of equation 2.33 is positive. It follows that

ζ2 − ζ +
Q

4
≥ 0 (2.34)

where Q is Toomre’s stability parameter (Toomre, 1964) and ζ = kT
|k| is the wave number |k|

in units of the Toomre wave number scale kT :

Q =
κ0cs0
πGΣ0

(2.35)

kT =
κ2

0

2πGΣ0
=

κ0

2cs0
Q (2.36)
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2.4. Thermodynamics
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Figure 2.1: Stability diagram for clumping into axisymmetric rings by a self-gravitating differ-
entially rotating, gaseous disk. The lighter read area is the unstable region and
the red curve shows marginal stability. The white area is stable. Short-wavelength
disturbances are stabilized by the effects of pressure whereas long-wavelength
disturbances are stabilized by the effects of rotation.

Figure 2.1 illustrates equation 2.34. The lighter red area shows where the disk is unstable and
the red curve shows marginal stability. So the disk is for Q ≥ 1 stable and for Q < 1 it depends
on the wave number |k| and if it’s stabilized either by pressure (short wave disturbances) or
rotation (long wave disturbances).

Further discussion on stability can be found in Kley (2008a); Shu (1992); Binney and Tremaine
(1987). Papaloizou and Savonije (1991) showed that for non-axisymmetric disturbances, which
grow as multi-armed spirals, the disks becomes unstable for Q . 1.5.

2.4 Thermodynamics

Disk evolution heavily depends on the thermodynamics within in the disk. As the material is
compressed when the disks collapses additional internal energy is generated. This heats up the
disk and affects the further disk evolution. Therefore the consideration of thermodynamics is
very important.

Many simulations of accretion disk only use an isothermal disk model, where the temperature
is constant over time. As we include viscous heating and radiative cooling, we need are more
realistic treatment of thermodynamics.

As the gas in the accretion disk is is nearly ideal (it is primarily composed of H2 molecules) we
use an ideal gas law to connect the pressure p with the surface density Σ and the temperature
T :

p = RΣT (2.37)

where R is a constant, equal to the universal gas constant divided by the mean molecular
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2.4. Thermodynamics

mass µmµ with mµ the molecular mass and µ = 2.35 for a typical accretion disk with about
70% hydrogen and 30% helium. R is equal to unity in code units (see section 3.1.2).

We assume an ideal gas where the specific heat at constant volume cv =
(
∂ε
∂T

)
V
is constant,

and therefore the specific thermal energy

ε(T ) =

T∫
0

cvdT
′ = cvT + ε(0)︸︷︷︸

:=0

= cvT (2.38)

scales with the temperature T . If h is the specific enthalpy and we further assume that the
specific heat at constant pressure cp =

(
∂h
∂T

)
V

is also constant, we can write

h(T ) =

T∫
0

cpdT
′ = cpT + ε(0)︸︷︷︸

:=0

= cpT (2.39)

If we now consider the first law of thermodynamics and use the definition of the specific
enthalpy h = ε+ pΣ, we can find the relation (Kley, 2008b, section 1.1)

cp − cv = R (2.40)

We define the specific heat ratio (adiabatic index) as

γ :=
cp
cv

= 1 +
R
cv

(2.41)

If we define the thermal energy per unit area e = εΣ equation 2.37 and 2.41 can be combined
as

p = RΣT = (γ − 1)cvTΣ = (γ − 1)e (2.42)

The specific entropy s = s0 + cv ln p
Σγ stays constant for adiabatic changes of state (ds = 0)

can be inverted to

p = exp

(
s− s0

cv

)
Σγ = κ(s)Σγ (2.43)

Together with the definition of the local sound speed cs we get

c2
s =

(
∂p

∂Σ

)
s

=
γp

Σ
= γRT (2.44)

as a simple expression for the local sound speed which defines the viscosity ν in the α-model
(see equation 2.5). Further details on the connection of the thermodynamical quantities can
be found in Kley (2008b); Baruteau (2008).

2.4.1 Estimation of cooling

As already stated, compression (e.g. by gravitational instabilities) heats up the disk, and this
energy has to be radiated way fast enough to allow further compression by gravitation as the
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thermal pressure has to be overcome (Gammie, 2001). The time needed to cool the disk can
be measured in the local cooling time τcool which is defined by

de

dt
= − e

τcool
(2.45)

Several theoretical and numerical studies (Gammie, 2001; Johnson and Gammie, 2003; Rice
et al., 2003, 2005; Mayer et al., 2004; Mejía et al., 2005) indicate that for disc fragmentation
to occur the cooling time τcool must satisfy

τcool < β(γ) Ω−1 (2.46)

where

0.5 . β(γ) . 2.0 (2.47)

This means that cooling has to occur on orbital timescales.

If we examine equation 2.15 in the hydrostatic and thermal equilibrium we find that

0 = (σ · ∇)~v −∇ · ~F ≡ Q+ −Q− (2.48)

The heating term Q+ (viscous dissipation) can be written as

Q+ =
1

2νΣ

[
σ2
rr + 2σ2

rϕ + σ2
ϕϕ

]
+

2νΣ

9
(∇ · ~v)2 (2.49)

where σ is the viscous stress tensor (see equation 2.12) in polar coordinates. The term is
dominated by the rϕ-component and thus

Q+ ≈
1

2νΣ
2σ2

rϕ =
1

νΣ

[
νΣ

(
r
∂

∂r

vϕ
r

+
1

r

∂vr
∂ϕ

)]2

(2.50)

≈ νΣr2

(
∂

∂r
Ω

)2

≈ νΣr2

(
∂

∂r
ΩK

)2

(2.51)

= νΣ
9

4
Ω2
K (2.52)

where we used in the third step that ∂vr
∂ϕ = 0 in equilibrium and Ω ≈ ΩK.

We can now introduce a simple β-Cooling by

Q− =
ΩK

β
e =

ΩK

β
ΣcvT (2.53)

If we now substitute the terms for Q+ and Q− in equation 2.48 we obtain

νΣ
9

4
Ω2
K =

ΣcvT

β
ΩK (2.54)

If we now use the definition of ν in the α-model and used the thermodynamical relations we
derived earlier, we find after some algebra (Gammie, 2001):

β =
4

9

1

γ(γ − 1)

1

α
(2.55)
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2.4. Thermodynamics

So in equilibrium there is a connection between the local cooling timescale τcool and the α of
the viscosity. If α and β do not match, the equilibrium must be unstable.

Apart from this systematic problem with β-cooling it is also very unphysical as cooling does
not depend on any local factors like density or temperature. We therefore introduce a more
realistic cooling based on local opacities in section 3.8.
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3 Numerical methods

3.1 Introduction - FARGO

In this thesis, we used the FARGO code written by Masset (2000). FARGO is a two-dimensional
hydrodynamical grid code which solves the isothermal Navier-Stokes equations using a staggered
polar grid (see 3.3). To speed up calculations the code uses the FARGO-Algorithm described
in section 3.4. The original version can be found on http://fargo.in2p3.fr.

The standard version of the FARGO code has no support for self-gravity or an energy equation.
Self-gravity and basic energy-equation support has been added by Clément Baruteau in his
PhD thesis (Baruteau, 2008).

The FARGO code is fully parallelized using the Message Passing Interface Standard1 (MPI) and
therefore can run on either multicore systems or clusters. To run on multiple cores the grid is
split radially in several rings and then each part is calculated independently on a core (domain
decomposition). After each time-step some overlapping area is synchronized between the cores
which calculated neighbour areas.

3.1.1 2D quantities

As FARGO is a two-dimensional code, all quantities have to be reduced to two dimensions. For
example the volume density ρ is reduced to a surface density Σ by

Σ =

∞∫
−∞

ρ0 · e−
z2

2H2 dz =
√

2πρ0H =
√

2πρ0hr (3.1)

assuming that ρ is vertically a Gauss-profile. H is the vertical height of the disk, where as
h = H

r is the aspect ratio.

In most of our simulations we used

Σ = 2ρ0hr (3.2)

to allow comparison with results from other studies which used this simplified relation.

3.1.2 Code units

To optimize the value range of data-types (like double) and for simplification of equations
the code uses special code units, instead of using the centimetre-gram-second (cgs) or metre-
kilogram-second (mks) system.

The code units are defined by

• A planet with an orbital radius l0 has an orbital period of 2π.

• The central mass has the mass m0.

All other units are derived from this definition. In particularly it applies:
1http://www.mcs.anl.gov/research/projects/mpi/standard.html
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3.2. Finite differences

• The time unit t0 is
√

l30
Gm0

• The gravitational constant G is equal 1.

• The temperature unit T0 is
√
Gm0
Rl0

• The gas constant divided by the mean molecular mass R is equal to 1.

3.2 Finite differences

FARGO solves the fluid equation using the method of finite-differences with a time-explicit,
multistep solution procedure. Therefore the solution of the partial differential equations is
split into parts using operator splitting. For a given operator operator L(y), e.g. given by

L(y) =
∂y

∂t
(3.3)

the operator is split into L(y) = L1(y) + L2(y) + · · · and then the solution procedure reads as

y1 − y0

∆t
= L1(y0) (3.4)

y2 − y1

∆t
= L2(y1) (3.5)

y3 − y2

∆t
= · · · (3.6)

where Li are the finite-difference representations of the operators Li. The solution obtained
via the split method is of course an approximation to the correct solution of the full nonlinear,
multidimensional operator L, but numerical experiments have shown that such a multistep
algorithm is more accurate than a single integration step base on old data (Hawley et al.,
1984).

In equation 3.4 we already used the finite-difference scheme, which means that we use finite
differences to approximate derivatives. For example, if want to calculate the derivative with
respect to x from a quantity ξ on the position i of our discrete grid, we can approximate

∂ξi
∂x
≈ ξi − ξi+1

xi − xi+1
=
ξi − ξi+1

−∆xi+1
(3.7)

∂ξi
∂x
≈ ξi − ξi−1

xi − xi−1
=
ξi − ξi−1

∆xi
(3.8)

where ∆xi = xi − xi−1. The first equation is an approximation using right-side differences
whereas the second equation uses left-side differences. These are both approximations of
first-order.

To improve the approximation and get rid of the favoritism of one direction FARGO uses
centered-differences of second order. Here the approximation read as

∂ξi
∂x
≈ ξi+1 − ξi−1

xi+1 − xi−1
=

ξi+1 − ξi−1

∆xi + ∆xi+1
=
ξi+1 − ξi−1

2∆x
(3.9)

where we used ∆x = ∆xi when the grid is evenly spaced.
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3.3. Staggered grid

In FARGO the Navier-Stokes equations discussed in section 2.2 are now split into two steps,
called the source and the transport steps, using operator splitting. In the source step, we solve
finite-difference approximations to

∂vr
∂t

=
v2
ϕ

r
− 1

Σ

∂p

∂r
− ∂Ψ

∂r
+

1

rΣ

[
∂

∂r
(rσrr +

∂

∂ϕ
σrϕ− σϕϕ

]
+

1

Σ

∂qr
∂r

(3.10)

∂vϕ
∂t

= − 1

Σ

1

r

∂p

∂ϕ
− 1

r

∂Ψ

∂ϕ
+

1

rΣ

[
∂

∂r
(rσrϕ) +

∂

∂ϕ
σϕϕ + σrϕ

]
− 1

Σ

1

r

∂qϕ
∂ϕ

(3.11)

where qr and qϕ are components of an artificial viscous pressure, required to smooth shocks on
a staggered-mesh code (see section 3.3) and are given by

qr =

{
C2
VNRΣ

(
∂vr
∂r ∆r

)2 (
∂vr
∂r ∆r

)
< 0

0 otherwise
(3.12)

qϕ =

C2
VNRΣ

(
∂vϕ
∂ϕ r∆ϕ

)2 (
∂vϕ
∂ϕ r∆ϕ

)
< 0

0 otherwise
(3.13)

C2
VNR is the Neumann-Richtmyer’s constant (Stone and Norman, 1992; Masset, 2000) and ∆r

and r∆ϕ are the sizes of the mesh.

The transport step accounts for the fluid advection by solving finite-difference approximations
to the equations

∂Σ

∂t
+∇ · (Σ~v) = 0 (3.14)

∂Σvr
∂t

+∇ · (Σvr~v) = 0 (3.15)

∂rΣvϕ
∂t

+∇ · (rΣϕ~v) = 0 (3.16)

These equations can now be rewritten as

y ∂

∂t

 Σ
Σvr
rΣvϕ

 dV =
y

 ∇ · (Σ~v)
∇ · (Σvr~v)
∇ · (rΣvϕ~v)

 dV =
{
 Σ~v

Σvr~v
rΣvϕ~v

 d~S (3.17)

where we used Gauss’ theorem in the last step. Thus, all quantities can be updated by taking
into account their fluxes at each cell interface. This is now be done using a simple second-order
upwind interpolation (van Leer, 1977) individually for each direction. The ϕ-direction is
handled in a special way in FARGO (see section 3.4).

More details on the implementation of finite-differences in FARGO can be found in Baruteau
(2008) and for more detailed information on finite-differences in two-dimensional hydro-codes,
in particular the ZEUS code on which FARGO is based, see Stone and Norman (1992).

3.3 Staggered grid

As FARGO uses centered differences, odd-even decoupling can appear. Odd-even decoupling is
an undesired effect of discretization that leads to check board patterns in the solution. To
avoid this, a staggered grid is used in FARGO.
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Figure 3.1: Schematic of staggered grid used in FARGO. The gray cells represent the ghost cells
used in radial direction (see section 3.5) whereas the white cells represent the active
cells on which calculations are done. Scalar quantities are stored cell centered
(dots) as vector quantities are stored on the cell borders (arrows).

A staggered grid stores all scalar variables like density, energy, etc. cell-centered whereas all
vector variables like velocity are located at the cell faces. As each cell has only one center, but
two sides in each direction and these sides are shared with the neighbors cells, there are in
total N − 1 cell centers, but N cell borders for a grid with N − 1 cells.

Figure 3.1 illustrates the grid used in FARGO:

• Scalar quantities like density Σ are stored cell centered. This is illustrated as the red
grid.

• Vector quantities like velocity vϕ and vr are stored on the cell borders. This is illustrated
as the blue grid.

• The gray cells are the ghost cells in radial direction, which are updated by the boundary
condition after each time-step.

• There are no ghost cells in azimuthal direction, as the grid is periodical.
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3.4 The FARGO Algorithm

When solving hyperbolic partial differential equations (PDEs) the time-step ∆t is limited by

∆tij < C ·min

{
∆rij
vrij

,
rij∆ϕij
vϕij

, . . .

}
(3.18)

where vrij and vϕij are the radial and azimuthal velocities in cell [i, j] and ∆rij and rij∆ϕij
are the size of the cell. This limitation on the time-step is called Courant–Friedrichs–Lewy
Condition (CFL).

At the inner boundary of the grid, usually the cells are very narrow as we use a logarithmic grid,
meaning ∆r is very small and velocity vϕ is rather large, as vϕ ≈ ΩK · r =

√
GM
r3
r =

√
GM
r .

So the the cells at the inner boundary will determine the CFL-Condition.

Usually each time-step is divided in several sub-steps (see section 3.2 and Stone and Norman
(1992, ZEUS-2D)) for each quantity ξ (e.g. surface density, velocities, energy, . . .):

1. The sourceterms of the equations 2.6, 2.13 and 2.15 are applied. The sourceterms are
the terms on the right-hand side where no advection occurs.

2. Transport in radial direction processing the derivatives with respect to r.

3. Transport in azimuthal direction processing the derivatives with respect to ϕ.

The transport steps are usually alternated after each time-step (when not using the FARGO-
Algorithm). So, each time-step can be illustrated as:

ξ
source terms−−−−−−−→ ξa

radial transport−−−−−−−−−→ ξb
azimuthal transport−−−−−−−−−−−−→ ξ+

The idea of the FARGO-Algorithm (Masset, 2000) is now, to split up the azimuthal transport
step into two sub-steps:

3a. A residual velocity transport step with vϕresij = vϕij − v̄ϕij . This is the same as the
original azimuthal transport but with a replaced velocity and has to be done for each
cell individually.

3b. The advection by v̄ϕij is done in two steps. Therefore v̄ϕij is decomposed as the nearest
integer and a remainder which by construction is lower or equal to 0.5. In the first step
the material is shifted by the remainder, which can be achieved by the same as the
original azimuthal transport since the remainder is lower or equal to 0.5. The second
step just corresponds to an integer number of cells shift which is done by simple shifting
all cells.

As vϕresij < v̄ϕij the material in the cell [i, j] is now relatively slower and therefore the time-step
can be increased. But as the rings now move at different mean velocities it has to be guaranteed
that the rings don’t disconnect in one time-step due to shear. So the CFL-Condition changes
to

∆tij < C ·min

∆rij
vrij

,
rij∆ϕij
vϕresij

,
1

2

(
vϕij

rij∆ϕij
−

vϕi+1j

ri+1j∆ϕi+1

)−1

, . . .

 (3.19)
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Figure 3.2: Illustrating the FARGO-Algorithm: The different rings (colored in different gray)
rotate at different mean velocities, but all cells in one ring have the same mean
velocity but different residual velocities. The disk rotates differentially and therefore
the inner rings rotate at higher velocities than the outer rings.

where the second term accounts for the new residual velocity and the third term is a new term
to guarantees that shear doesn’t disconnect two neighboring cells [i, j] and [i+ 1, j].

Figure 3.2 illustrates the idea of the FARGO-Algorithm where the rings rotate at different
mean velocities.

3.5 Boundary conditions

As FARGO solves the Navier-Stokes equations which are partial differential equations boundary
conditions must be given for the boundary of the region where the equations are solved. Usually
Dirichlet boundary conditions are used for numerically calculations, which means that the
values (and not the derivatives) of the quantities are given for the boundary.

In numerics boundary conditions can be implemented efficiently through the use of ghost cells.
Ghost cells are one or more cells at the inner and outer boundary which are not set by the
calculation routines, but are used by the routines to calculate values in the active cells. There
is at least one ghost cell at the inner and outer boundary, but if higher-order derivatives are
used, there have to be more of them. Figure 3.1 displays the radial ghost cells in gray color
where as the azimuthal ghost cells are not needed, because in azimuthal direction a periodical
boundary condition is used.

The ghost cells are set by the boundary conditions after each time-step. There are different
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3.5. Boundary conditions

approaches how to set them. We used mainly open and reflecting boundary conditions, so this
will be discussed in detail here. All boundaries are presented at the inner boundary. They
need to be mirrored on the outer boundary.

3.5.1 Open boundary

Open boundary conditions allow material and energy to flow out of the computation domain
and leave the system, thus the name open. Therefore the surface density and energy cells
are just copied into ghost cells where as the velocity has to be checked if it points outwards
which is allowed or points inwards. If it points inward it has to be set to zero, as there is no
information known about the material outside which could flow in. So, the open boundary
conditions are implemented as

Σ0j = Σ1j (3.20)

ε0j = ε1j (3.21)

vr0j = vr1j =

{
0 vr2j > 0

vr2j otherwise
(3.22)

Outflow boundary conditions are very natural boundary conditions as little reflections can
occur. The problem is, that mass and energy can be lost through them but not come back.

The original version of FARGO used a different implementation of the open boundary:

vr1j =

{
0 vr2j > 0 or Σ1j < Σ̄0

vr2j otherwise
(3.23)

where Σ̄i = 1
N

∑N
j=0 Σij |t=0 is the azimuthally averaged surface density at the beginning of

the simulation.

3.5.2 Reflecting boundary

Reflecting boundary conditions are used to solve the problem of loosing mass or energy through
the boundaries. They are also named closed boundary conditions for this reason. Reflecting
boundaries as the name suggests just reflect all energy and mass back. Their implementation
is very simple

Σ0j = Σ1j (3.24)

ε0j = ε1j (3.25)

vr0j = vr2j (3.26)

vr1j = 0 (3.27)

The problem with reflecting boundaries is the reflection. Mass or energy can be collected at
the boundaries and waves propagating through the whole disk can occur. Also oscillation of
mass or energy at such boundaries are quite frequent.
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3.6. Self gravity

3.5.3 Damping

To prevent these unwanted effects at the boundaries the disk can be damped towards there
initial values at the boundaries. Usually this is done for the radial and angular velocity. The
radial velocity is usually zero at the beginning (or same non-zero value to prevent gravitational
collapse) whereas the azimuthal velocity is Keplerian.

The quantities are usually damped over a timescale τ which is measured in scales of 2π
ΩK(rmin) in

a given damping range (rmin, rmin · d) where typical values for d range from 1.0 to 1.1, meaning
that damping occurs within ∆r

r = 10 % at the inner region. Each quantity ξ is damped by

ξ(r) = (ξ(r)− ξ0(r)) · exp

−dt
(

r−rmin
rmin−rmin·d

)2

τ 2π
ΩK(rmin)

+ ξ0(r) (3.28)

Damping is not a boundary condition and so it is not updating the ghost cells. Therefore
another routine must handle this.

3.6 Self gravity

To include self-gravity, the gravitational potential as described in section 2.3 has to be added
to the Navier-Stokes equations as an external force. As we use a two-dimensional disk, we
have to modify the equation 2.21 to

Ψ(~r) = −G
x Σ(~r′)

[(~r − ~r′)2 + ε2]
1
2

d~r′ (3.29)

where Σ denotes surface density field and ε softening length. The softening length ε has two
reasons: On the one hand it avoids singularity when ~r = ~r′ and on the other hand takes
account for the infinitesimal height of the disk. The typical value used in our simulations was
ε = 0.01.

To reduce the computational time needed to calculate the potential it is rewritten as a
convolution product to calculate it in Fourier space. With M = Σ(~r) and K = (~r2 + ε2)−

1
2 it

can be written as

Ψ = −G [M ∗K] = −GF−1 [F(M) · F(K)] (3.30)

As FK is the same for all time-steps and the Fourier transformation can be calculated with
Fast Fourier Transforms (FFT) the number of operations used to calculate the potential can
reduced be from O(N2) to O(N lnN).

A problem using (periodic) discrete Fast Fourier Transforms is the periodicity. For example if
we assume a singular mass density in one dimension where M = 1 for x = 0.1 and M = 0 for
all other values of x and a periodic kernel with ε = 0.01 in one dimension we can calculate the
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Figure 3.3: One-dimensional illustration of the alias issue. In the upper left panel is the
surface density with a single singular mass density at r = 0.1. The upper right
panel displays the periodic kernel. The lower panel shows the numerical potential
obtained by FFT (blue crosses) and the analytical calculated potential (red curve).

analytical potential:

M(x) = δ(x− 0.1) (3.31)

K(x) =
1√

x2 + 0.012
(3.32)

Ψ(x) = −G
∫

δ(x′ − 0.1)√
(x− x′)2 + 0.012

dx′ = −G 1√
(x− 1)2 + 0.012

(3.33)

Figure 3.3 displays the calculated analytical potential and the potential calculated by discrete
FFT. The analytical potential is not periodic as expected, however the numerical potential is
always periodic (because of the periodic kernel) and its value differ from the analytical one for
r > 0.5.

This problem is called aliasing and can be solved by doubling the space in radial direction and
filling the additional news cells with zero mass. In azimuthal direction this problem does not
occur as the potential is here periodic.
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3.6. Self gravity

Another issue is, that FARGO uses polar coordinates, and equation 3.29 reads as

Ψ(r, ϕ) = −G
rmax∫
rmin

2π∫
0

Σ(r′, ϕ′)√
r2 + r′2 + 2rr′ cos(ϕ− ϕ′) + ε2

r′dr′dϕ′ (3.34)

where rmin and rmax are respectively the radii of the inner and outer edge of the disk. This
equation can be written as a convolution product with the variables {u = ln r

rmin
, ϕ} (Binney

and Tremaine, 1987) and if ε scales with r. Then equation 3.34 can be written as

Ψ(u, ϕ) = −G rmin e
−u

2

umax∫
0

2π∫
0

S(u′, ϕ′)K(u− u′, ϕ− ϕ′) du′dϕ′ (3.35)

where S and K are defined as

S(u, ϕ) = Σ(u, ϕ)e
3u
2 (3.36)

K(u, ϕ) =

[(
1 +

(
ε

rmineu

)2
)
eu + e−u − 2 cosϕ

]− 1
2

(3.37)

But as Baruteau (2008) points out, there is a problem with radial self-acceleration when for
example using a singular distribution for Σ. If we assume Σ = δ(ud, ϕd) equation 3.35 yields:

Ψ(u, ϕ) = −G rmin e
−u

2 S(ud, ϕd)K(0, 0) = −G (rmin)2 e−
3ud+u

2

ε
(3.38)

which is proportional to e−
u
2 if ε scales with r as assumed.

Baruteau suggests to solve the problem by calculating directly the self-gravitating accelerations
gr and gϕ. Akin to the potential, these accelerations read as convolution products. The radial
self-gravitating acceleration can be written as

gr(u, ϕ) = −Ge−
u
2

umax∫
0

2π∫
0

Sr(u
′, ϕ′)Kr(u− u′, ϕ− ϕ′) du′dϕ′ + Grmine

uΣ(u, ϕ)
∆u∆ϕ

ε

(3.39)

where ∆u and ∆ϕ are the mesh sizes and Sr and Kr are given by

Sr(u, ϕ) = Σ(u, ϕ)e
u
2 (3.40)

Kr(u, ϕ) =
1 +

(
ε

rmineu

)2
− e−u cosϕ[

2(coshu− cosϕ) + ε2

(rmin)2eu

] 3
2

(3.41)

As Kr(0, 0) = rmine
u

ε there is a corrective term in 3.39 to remove radial self-forces.

The azimuthal self-gravitating acceleration can be written as

gϕ(u, ϕ) = −Ge−
3u
2

umax∫
0

2π∫
0

Sϕ(u′, ϕ′)Kϕ(u− u′, ϕ− ϕ′)du′dϕ′ (3.42)
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with Sϕ and Kϕ given by

Sϕ(u, ϕ) = Σ(u, ϕ)e−
3u
2 (3.43)

Kϕ(u, ϕ) =
sinϕ[

2(coshu− cosϕ) + ε2

(rmin)2eu

] 3
2

(3.44)

As Kϕ(0, 0) = 0 no corrective term in equation 3.42 is needed.

The accelerations gr and gϕ are now used by FARGO to update vr and vϕ in each time-step.
Therefore only Sr and Sϕ have to be calculated each time-step by FFT. Kr and Kϕ only have
to be calculated once as the do not change over time.

More details on the implementation of self-gravity can be found in Baruteau (2008, Chapter
3.2).

3.7 Energy equation

The original FARGO code only implements an isothermal equation of state and therefore doesn’t
solve the energy equation (Equation 2.15). Baruteau (2008) added a third sub-step and
introduced a basic energy equation:

∂e

∂t
+∇ · (e~v) = −p∇ · ~v +Q+ −Q− (3.45)

where e = εΣ is the thermal energy density (thermal energy per unit area) and p is the
vertically integrated pressure. The first term on the right-hand side includes compressive
heating where as Q+ and Q− are for other heating and cooling source terms.

The Q+ heating term is implemented as viscous heating (see equation 2.49) and can be
switched off or decreased by a constant factor on demand. There is also an additional heating
term arising from the heat flux from the artificial viscosity, required to smooth shocks with a
staggered-mesh code (Stone and Norman, 1992):

Qart
+ = −qr

∂vr
∂r
− qϕ

∂vϕ
∂ϕ

(3.46)

where qr and qϕ are given by equations 3.12 and 3.13.

The Q− cooling term is implemented as local radiative cooling (described in section 3.8) or
a simple β-cooling law (see equation 2.45). They can be switched on and off independently.
The β-cooling has to be handled with care in combination with a α-viscosity model, as it is
unstable (see equation 2.55).

3.8 Local radiative cooling

The cooling term Q− corresponds to the ∇~F term in equation 2.15. We assume now, that the
amount of energy transported by radiation in the vertical direction (z-axis) is much larger
than that transported horizontally ((r, ϕ)-plane). This assumption is valid, if the the vertical
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extent of the disk remains small compared to extent in the horizontal direction. If we now
integrated ∇~F over the disk height we get

Q− =

∞∫
−∞

∇~Fdz ≈
∞∫
−∞

∂Fz
∂z

dz = Fz(H)− Fz(−H) = 2Fz(H) (3.47)

~F is the frequency-integrated radiation flux it reads as

~F = −16σR
3κρ

T 3∇T (3.48)

where σR is the Stefan-Boltzmann constant, κ the frequency-integrated opacity coefficient
and ρ the mass density. We can now rewrite Q− (Kley and Crida, 2008; Kley et al., 2005;
D’Angelo et al., 2003) as

Q− = 2 [Fz(H)− Fz(0)] ≈ −16σR
3κρ

[
T 4(H)

H
− T 4(0)

H

]
(3.49)

and with τ = κρH = 1
2κΣ for inner parts of the a circumstellar disk where T 4(0)� T 4(H)

this yields:

Q− =
2σRT

4

3
4τ

(3.50)

where T is the disk mid-plane temperature.

Equation 3.50 represents a fairly good approximation when the medium is very optically
thick (τ � 1), but this is not true for all parts of our simulated disks (especially between
spiral arms the density can be very low). Hubeny (1990) found an appropriate relationship,
which represents a generalization of the gray model of classical stellar atmospheres in local
thermodynamic equilibrium. Therefore we use the following expression for Q−:

Q− =
2σR
τeff

T 4 (3.51)

where τeff is given by Hubeny’s theory:

τeff =
3

8
τ +

√
3

4
+

1

4τ
(3.52)

For the Rosseland mean opacity κ we adopt power-law dependencies on temperature and
density described by Lin and Papaloizou (1985), where

κ = κ0ρ
aT b (3.53)

for various opacity regimes. Each opacity regime is described by a minimum and maximum
(density dependent) temperature and has a given κ0, a and b. Table 3.1 gives an overview of
the constants for the different opacity regimes.

To avoid discontinuities we used a smoothed function which connects the different regimes.
Figure 3.4 shows the Rosseland mean opacity for a fixed density value of ρ = 1 · 10−8 cm−3g.
The horizontal lines mark the different regimes described in table 3.1. The red dotted lines
are the power-laws for the specific regime whereas the blue curve is the smoothed function we
used in the code.
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Table 3.1: Details of the various opacity regimes by type, showing the transition temperature
and the constants κ0, a, b. All values are quoted in cgs units. See Lin and Papaloizou
(1985) for further details.

# regime κ0 [cm2g−1] a b
temperature range [K]
from to

1 Ice grains 2 · 10−4 0 2 0 170

2 Sublimation of ice grains 2 · 1016 0 −7 170 210

3 Dust grains 5 · 10−3 0 1 210 4.6 · 103ρ
1
15

4 Sublimation of dust grains 2 · 1034 2
3 −9 4.6 · 103ρ

1
15 3000

5 Molecules 2 · 10−8 2
3 3 3000 1.1 · 104ρ

1
21

6 Hydrogen scattering 1 · 10−36 1
3 10 1.1 · 104ρ

1
21 3 · 104ρ

4
75

7 bound-free & free-free 1.5 · 1020 1 −5
2 3 · 104ρ

4
75 —
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Figure 3.4: Opacity κ(T ) at density ρ = 1 · 10−8 g/cm3. The vertical lines separate the different
regimes described in table 3.1. The dotted red curve show the power-laws for each
region whereas the blue curve is the smoothed function used in the code.
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3.9 Tests

To test the implementation of the viscous heating and local radiative cooling, comparison
calculations to the paper by Kley and Crida (2008) have been done.

Kley and Crida used a model with a central star mass Mstar of one solar mass (M�) and a
total disk mass of Mdisk = 0.01M� within radii between rmin = 0.4 rjup and rmax = 2.5 rjup.
The model was initialized with a surface density profile of Σ ∝ r−

1
2 and a temperature profile

of T ∝ T−1. The velocities were pure Keplerian (vr = 0, vϕ =
√

GMstar
r ).

The viscosity in this model was of a constant value of ν = 1015 cm2/s, which relates to an
equivalent α of 0.004 at rjup for a disc aspect ratio of h = H

r = 0.05.

The model is relaxed to its equilibrium by solving the full Navier-Stokes equations but without
self-gravity. The evolution after 150 orbits is displayed in figure 3.5.

Kley and Crida used closed boundary conditions for the surface density and the temperature
where as velocities where where damped towards their initial values on a timescale of approxi-
mately the local orbital period. We used reflecting boundary conditions and did calculations
with and without damping of velocities.

The surface density plots match very well for radii up to 2 rjup. The values beyond differ,
because the surface density oscillates there around the equilibrium value and thus the density
depends on which exact time is plotted.

The temperature plots have the same shape, but the values of Kley and Crida are a little
bit higher especially for larger radii. The reason is that Kley and Crida included also the
two-dimensional radiative flux in the (r, ϕ)-plane.
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Figure 3.5: Comparison of surface density and temperature of the relaxed model with calcula-
tions done by Kley and Crida (2008)
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4. Results

4 Results

4.1 Isothermal disk

To show the possibility of fragmentation in more massive disks and to test the implementation
of the self-gravity part in the code, the first calculations used a very simple, isothermal model
with constant viscosity ν = 1015 cm2/s.

We used a disk with a small radial extent ranging from 0.5 AU to 2.5 AU around a solar
mass host star (Mstar = M�). The surface density Σ was initialized with a Σ(r) = Σ0 · r−1.5

power-law with random variation of 10 % to remove axisymmetry (see figure 4.1, upper panel).
The disk aspect ratio was set to h = 0.05 and no energy equation was solved. At initial state,
the gas was rotating at

Ω(r) =

(
ΩK(r)2

[
1− (1 + σ − 2f)h2

]
− gr(r)

r

) 1
2

(4.1)

which imposes a strict balance between gravitational force due to the central star, the pressure
force and the centrifual force corrected by the self-gravity acceleration given by equation 3.39.
Here is σ = 1.5 the exponent of the the Σ(r) power law (Σ(r) = Σ0 · r−σ) and f the flaring
index defined by

h(r) = h(r0)

(
r

r0

)f
(4.2)

which describes the radial depency of the disk’s aspect ratio.

Figure 4.2 shows the Ω(r) at t = 0 in terms of ΩK(r). The radial velocity is initialized with

vr(r) = − 3

Σr
1
2

∂

∂r

[
νΣr

1
2

]
(4.3)

which is evaluated from the combination of mass and angular momentum equations (Lynden-
Bell and Pringle, 1974).

We did four calculations with disk masses of Mdisk = 0.05Mstar, Mdisk = 0.1Mstar, Mdisk =
0.2Mstar and Mdisk = 0.4Mstar to test the Toomre criterion (see section 2.3). The two lighter
disks do not satisfy Toomre’s criterion at all, where as the 0.2Mstar mass disk satisfies it for
radii larger than 1 AU. The 0.4Mstar satisfies the Toomre criterion for all radii and therefore
should fragment.

We used the original FARGO open boundaries (see section 3.5) which does not allow that much
mass to flow outwards as normal boundary conditions and a grid with 256 cells in radial and
128 cells in azimuthal direction.s All disks were evolved for a time of 50 orbits at r = 1 AU
which corresponds to a evolution over 50 years. The calculations were done using an 8-core
3.0 GHz Intel® Xeon™ E5450 system.

Expectedly, we do not get fragmentation for the two disks which do not satisfy Toomre’s
stability criterion, whereas the two more massive disks do fragment. Table 4.1 summarizes
the calculations. In figure 4.3 the surface density of the disks with masses 0.1Mstar, 0.2Mstar
and 0.4Mstar are plotted. The 0.05Mstar disk does not show any major changes after the
simulation of 50 years.
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Figure 4.1: Surface density (upper panel) and Toomre parameter (lower panel) for the isother-
mal model at t = 0 with the original FARGO open boundary condition. The
fluctuations are caused by the 10 % random initialization. The 0.2Mstar disk
(purple curve) satisfies the Toomre criterion (Q < 1) for r > 1 AU whereas the
0.4Mstar disk (red curve) satisfies the Toomre for all radii.
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Figure 4.2: Angular rotation rate Ω in terms of Kepler rate ΩK (see equation 2.2) at t = 0.
The angular rate is self-gravity compensated and therefore not equal to ΩK.

Figure 4.3 shows some artifacts especially on the outer boundary due to the implemented
boundary conditions in FARGO. Therefore, we redid all calculations with normal open boundary
conditions (see equation 3.23)with a resolution of 256 cells in radial and 384 cells in azimuthal
direction. Figure 4.4 shows the disk with normal open boundary conditions. For the low mass
disks there is no significant difference, but the 0.2Mstar disks does not fragment into clumps
even after 500 years. The 0.4Mstar disk fragments into clumps after only a very short time,
and all clumps beside of one will leave the computational domain within 50 years as the disk
is now really open at the boundaries. This may also be the reason why the 0.2Mstar disk
does not fragment as mass left the system too rapidly through the outer boundary. Figure 4.5
shows the evolution of the disk masses over time.

After 50 years the 0.4Mstar disk has nearly all its mass left in one density clump orbiting

Table 4.1: Fragmentation of a isothermal disk depending on its mass with the original FARGO
open boundary condition. See section 4.1 and figure 4.3 for detailed information
about the models.

1 2 3 4
disk mass 0.05Mstar 0.1Mstar 0.2Mstar 0.4Mstar

Σ0 40467.9 g/cm2 80935.9 g/cm2 161872 g/cm2 323744 g/cm2

satisfies Toomre criterion no no r > 1 AU yes
fragmentation no no yes yes
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t = 0 years t = 25 years t = 50 years

105 g/cm2 106 g/cm2

t = 0 years t = 10 years t = 20 years

105 g/cm2 106 g/cm2

t = 0 years t = 2.5 years t = 5 years

105 g/cm2 106 g/cm2

Figure 4.3: Time evolution of the disk’s surface density with masses of 0.1Mstar (upper row),
0.2Mstar (middle row) and 0.4Mstar (lower row) with the original FARGO open
boundary condition. The disks ranges from 0.5 AU to 2.5 AU. The 0.1Mstar
mass disk doesn’t fragment after the simulation of 50 years, whereas the 0.2Mstar
disk fragments after about 20 years. The 0.4Mstar disk fragments after a very short
time of only a few years. The color-axis of the different disks has been adjusted to
have the same coloring at the start point.
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t = 0 years t = 25 years t = 50 years

105 g/cm2 106 g/cm2

t = 0 years t = 10 years t = 20 years

105 g/cm2 106 g/cm2

t = 0 years t = 2.5 years t = 5 years

105 g/cm2 106 g/cm2

Figure 4.4: Time evolution of the disk’s surface density with masses of 0.1Mstar (upper row),
0.2Mstar (middle row) and 0.4Mstar (lower row) with open boundary condition.
The disks ranges from 0.5 AU to 2.5 AU. The 0.1Mstar mass disk doesn’t fragment
after the simulation of 50 years. The 0.2Mstar disk shows unregular spiral arms, but
does not fragment into clumps even after 500 years. The 0.4Mstar disk fragments
after a very short time of only a few years. The color-axis of the different disks
has been adjusted to have the same coloring at the start point.
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Figure 4.5: Evolution of disk mass over time. The higher the disk mass the more mass is lost
over time. The 0.1Mstar disk loses only 18 % of mass in the first 50 years whereas
the 0.2Mstar loses 37 % and the 0.4Mstar even 91 %.

around the star a roughly 1 AU.

As in the first two simulations the disk was very small with an radial extent only ranging from
0.5 AU to 2.5 AU, we did another simulation with a rather larger disk ranging from 10 AU to
100 AU and a disk mass of Mdisk = 0.5Mstar. The disk satisfies Toomre’s criterion at all radii
as Q ≈ 0.5.

Within 1000 years the disk fragments into several clumps (see figure 4.6). Some of them collide
and grow into bigger clumps. After about 4000 years only one clump at about 20 AU is left,
which contains nearly all mass left (≈ 0.04Mstar ≈ 42Mjup). All other clumps have collided
or left the computational domain. Figure 4.7 shows the evolution of the disk mass.
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Figure 4.6: Time evolution of the disk’s surface density with a mass of 0.5Mstar and a large
disk with radial extent ranging from 10 AU to 100 AU. The fragmentation occurs
within 1000 years.
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Figure 4.7: Evolution of disk mass over time of the 0.5Mstar mass disk. Nearly all mast lost is
lost during the first 5000 years.
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4.2 Disks with cooling

In section 2.4.1 we described an estimation for cooling and derived a correlation between the
α-parameter of viscosity (Shakura and Sunyaev, 1973) and the local cooling rate β (see equation
2.55). In this section we examine the influence of the α-parameter on the fragmentation of the
disk using local radiative cooling.

In all of these simulations we used a rather large disk ranging from 1 rjup = 5.2 AU to
10 rjup = 52 AU around a solar mass host star. The disk has a total mass of 0.1Mstar and an
aspect ratio of h = 0.05. We ran the simulation for α values of 0.005, 0.01, 0.02, 0.04, 0.06,
0.08 and 0.5.

To have a well defined initial conditions, we bring all models in the first step into local thermal
equilibrium. We initialized our simulations with a density profile of Σ(r) = Σ0 · r−1 and a
specific energy profile of ε(r) = ε0 · r−1 and an energy equation with radiative local cooling
using reflecting boundary conditions to keep the disk mass constant (see figure 4.8). For
this purpose we perfomr quasi one-dimensional calculations using a grid with only 4 cells in
azimuthal direction. We assume that the equiblibrium is reached, when the energy e does not
change any more (see figure 4.9).

The temperature of models with higher α are higher than the models with lower α in thermal
equilibrium as expected, because the higher viscosity heats the disks more efficiently as all
heating is done by viscous dissipation (see equation 2.49). Also the higher viscosity models
display a flatter density profiles.

We then used the radial profile of the surface density Σ and energy profile e to initialize
the actual simulations with self-gravity. The density profile is perturbed by 10 % to remove
axisymmetry. The velocities were initialized to have a a strict balance between gravitational
force due to the central star, the pressure force and the centrifual force corrected by the
self-gravity acceleration (see equations 4.1 and 4.3, where σ = 1 and f = 0)

We evolved all simulations over a timescale of 500 orbits (at r = 1 AU) which corresponds
to 500 years. To rule out problems with Toomre’s criterion we did the simulations for the
α = 0.02 model also with a double disk mass. Both disk masses satisfy Toomre’s criterion for
r & 4.5 AU (see figure 4.10).

All simulations done with this setting do not show any fragmentation even after 1000 years.
Figure 4.11 shows the disks with different α values after 500 years.
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Figure 4.11: Time evolution of the disk’s surface density after 500 years different values of α.
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4.2.1 Comparison with SPH models

For this sequence of calculations, we adopted a disk model given by Rice et al. (2005). The
radial extent of the disk ranges from 0.25 AU to 25 AU around a solar mass host star. The
density profile is initialized with a Σ(r) = Σ0 · r−1 power-law and the temperature is given
by T (r) = T0 · r−0.5. Like in all our models, the velocities were initialized to have a a strict
balance between gravitational force due to the central star, the pressure force and the centrifual
force corrected by the self-gravity acceleration (see equations 4.1 and 4.3, where σ = 1 and
f = 0.25).

Rice et al. performed several simulations using a SPH (Smoothed Particle Hydrodynamics)
code with heating by viscous dissipation and pdV work and cooling by a simple β-Cooling
as introduced in equation 2.45. They used an αSPH = 0.1 for the viscous dissipation which
corresponds to an α ≈ 0.01 (Lodato and Rice, 2004, appendix) for our α-model by (Shakura
and Sunyaev, 1973). They started their simulations for different masses with small β values
that should fragment and then increased β simulation by simulation to check when it stops
fragmenting. For the simulations comparable to ours, they get fragmentation for β . 12.

We consider disk masses of Mdisk = 0.25Mstar and 0.5Mstar (Rice et al. also considered a
disk mass of Mdisk = 0.1Mstar, but as we do not get fragmentation even for the more massive
disks, we skipped this). Figure 4.12 shows the Toomre parameter for both disk masses. Rice
et al. normalized the temperature, so that at the beginning of the simulation the disk has
a minimum of Q = 2 at r = 25 AU, whereas our both disk have a Q < 2, so should be even
more likely to fragment. We did all calculations with reflecting boundary conditions and some
of them in addition with open boundary condition, but did not see any major changes on the
question of fragmentation.

We used the α-model (Shakura and Sunyaev, 1973) for viscosity with α = 0.02 and our local
radiative cooling to cool our disk (γ = 7

5). We do not see any fragmentation with our local
radiative cooling. As described in section 2.4.1 the β-Cooling with viscous dissipation and
α-viscosity is unstable and hence, we could not calculate direct analogues to compare with the
results of Rice et al., but if we calculate the disk using β-Cooling and abstain from viscous
heating the disk shows signs of fragmentation (see figure 4.13), but the Toomre parameter
satisfies Toomre’s criterion only for radii less than 4 AU (see figure 4.14).

As β-Cooling does not depend on any local factors the cooling rate is always the same, and
the disks tend to have a lower temperature. To simulate this with our local radiative cooling,
we calculated an additional sequence where we reduced our viscous dissipation by a factor
λ of 10 and 100 in the calculations. The disk temperature decreases as expected (see figure
4.15), but no fragmentation occurred after 500 orbits which is shown in figure 4.16. Figure
4.17 shows the evolution of the Toomre parameter of the disk with different values of λ. The
0.25Mstar disk does not satisfy Toomre’s criterion at any time, whereas the 0.5Mstar satisfies
it at t = 0, but not in later time-steps. The increase of the Toomre parameter on the outer
boundary is not caused by the FARGO open boundary conditions used in the simulations, as
these effects also occur on calculations using the normal open boundary conditions.

We also tried to increase the cooling by a factor of 10 instead of reducing the heating, but this
does not change the results concerning fragmentation.
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Figure 4.12: Toomre Parameter Q for the Mdisk = 0.25Mstar and 0.5Mstar disk. The heavier
disk satisfies Toomre’s criterion for r & 6 AU whereas the lighter disk does not fit
the Q < 1 criterion at all.
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Figure 4.13: First signs of fragmentation of a 0.25Mstar disk after 230 orbits at r = 1 AU with
β-Cooling and no viscous dissipation. Figure 4.14 displays the Toomre parameter
at this time-step.
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Figure 4.14: Toomre parameter Q of a 0.25Mstar disk after 230 orbits at r = 1 AU with
β-Cooling and no viscous dissipation.
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Figure 4.15: Azimuthally averaged temperature of the 0.25Mstar disk after 500 orbits at
r = 1 AU with different damping factors λ of the viscous heating. As expected,
disk with less heating have lowered temperatures, but the difference between
factor 10 and 100 is vanishing for r > 15 AU.
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Figure 4.16: Surface density evolution of the 0.25Mstar disk after 500 orbits at r = 1 AU with
different reduction factors λ of the viscous heating. The left panel is with normal
viscous heating whereas the middle panel is reduced by a factor of 10 and the
right panel by a factor of 100.
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5 Summary
In this work we simulated two-dimensional accretion disks around host stars with the hydro-
dynamic code FARGO, which solves the Navier-Stokes equations. The code has been modified
to include self-gravity and an energy equation with viscous heating and local radiative cooling
and as an alternative simple β-cooling where cooling timescales have a fixed proportionality to
the orbital timescale. For the viscosity of the disk, we used the phenomenological approach of
Shakura and Sunyaev (1973), known as the α-model.

In the first step, we simulated isothermal disks with no evolution of energy to test the
fragmentation disk under isothermal conditions. If the disks satisfies Toomre’s stability
criterion they do not fragment whereas if they do not satisfy it, they fragment.

In further simulations we examined the dependency of the α parameter of the viscosity model
on the fragmentation of the disk ranging from 1 rjup to 10 rjup with the use of the energy
equation with viscous heating and local radiative cooling. Whatever value of α we used in
range range of 0.005 to 0.5 we did not get any fragmentation.

Last but not least we performed calculations in analogy to simulations done by Rice et al.
(2005) with radial disk extent ranging from 0.25 AU to 25 AU. In comparison to Rice et al.
who used a SPH code and β-cooling we used the FARGO grid code and local radiative cooling.
Whereas Rice et al. got fragmentation depending on the value β we did not obtain any
fragmentation at all.

We therefore conclude that adding a more realistic cooling method (apart from β-cooling)
makes the disk less likely to fragment. As all our non-isothermal simulations had a radial
extent not exceeding 10 rjup = 52 AU, fragmentation could occur for radii larger than that.
This has to be checked in future calculations.

Also most of the calculations have been done using the original FARGO open boundary condition.
To check the influence of the boundary effects most of the calculations should be redone using
more realistic open boundary conditions.
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